Algorithms for Straight Line Planar Graph Drawing

Ross Evans

August 14 2020

Abstract
This paper discusses straight line drawings of planar graphs on grids. The main
topic of summary is the paper How to Draw a Planar Graph on a Grid by Frays-
seix, Pach, and Pollack. The paper summarizes their argument, while providing extra
background information, concrete examples, and motivation. Mention is also given to
Tutte’s How to Draw a Graph, and some other recent developments since Fraysseix,
Pach, and Pollack’s paper.

1 Introduction

Drawing a graph on the plane has been a fundamental method of visualizing a graph’s struc-
ture since the beginning of the study of graph theory. In Euler’s seminal paper, Solutio
problematis ad geometriam situs pertinentis, Fuler analyzed whether an individual could
cross each of the seven bridges of Konigsberg exactly once [8]. He notably included the first
ever diagram of a graph in this paper, not only laying the foundation for graph theory, but
also demonstrating the usefulness of drawings as a method to easily visualize and conceptu-
alize graphs. Since then, many achievements have been made relating to planar graphs, one
of the most notable of them being Kuratowski’s characterization of planar graphs as those
not containing a subgraph that is a subdivision of K5 or K33. The development of graph
drawing algorithms did not occur until the 1960s, when Tutte published his paper How to
Draw a Graph. This paper aims to provide a summary on a few straight-line graph drawing
algorithms. First, it will be proved that every planar graph has a drawing using exclusively
straight-line edges. Then, there will be a brief discussion on Tutte’s method, and some of
the issues associated with the algorithm derived from his proof. The bulk of the paper will
consist of summarizing the work done by Fraysseix, Pach, and Pollack in creating an algo-
rithm to draw any planar graph on a 2n — 4 by n — 2 grid (this grid area is asymptotically
optimal). Finally, there will be brief mentions on improvements made to this algorithm in
the intervening years with regards to reducing the running time of the algorithm, as well as
reducing the constant factor of the grid area.

2 Preliminaries

A graph G = (V, E) will be defined in the usual way as an ordered pair of sets, with the
set V' representing edges, and the set E containing unordered pairs of vertices. This paper



will focus exclusively on simple undirected graphs, and although this definition excludes the
possibility of repeated edges, self-loops, and directionality, it will nevertheless suffice for the
algorithms presented here.

Defining a planar embedding properly can be a somewhat tricky task; it requires a degree
of subtlety that is easily overlooked. For our purposes, a planar embedding of a graph
G = (V, E) will be an ordered pair (V’, E'), where V' is a finite subset of R?, and each edge
in £’ is a curve whose endpoints are in V’, with the expected stipulations that each vertex
in V' corresponds to exactly one point in V', and that edges in £ correspond to curves in
E’ connecting the expected points. We also require that the interiors of the edges in E’
are disjoint from each other and the vertices; this yields the expected behaviour that an
edge does not pass through multiple vertices on its path and that edges are non-crossing.
To be fully rigorous, in this context, a curve is a subset of R? of the form f([0,1]) where
f :]0,1] — R? is a continuous injective function. By enforcing that the endpoints ((f(0)
and f(1)) of each edge correspond to points in V', the behaviour of the embedding is as
expected. These definitions of a planar embedding are presented for rigour, but often, the
arguments discussed in this paper will not go into full topological detail. For example, it
could be demonstrated that the faces of a graph as typically defined would, in this definition,
be the connected topological spaces of R? — V’ — E’. It then becomes arduous to prove even
simple results such as Euler’s Formula, the fact that the embedding of a cycle has an inside
and an outside, or that each edge borders at most two faces. Hence, we will instead opt to
discuss planar graphs informally, while recognizing that the arguments presented should be
carefully inspected for topological soundness with the proper rigour of something like the
Jordan Curve Theorem.

Although this won’t be justified rigorously, it should be reasonably clear that any planar
embedding using curves could also instead use a union of finitely many line segments. This
is intuitively because a curve will be better approximated as more line segments are used,
and therefore using enough line segments will yield a new embedding which also has no
edge-crossings. A question one could ask after realizing this result, is whether all graphs
with a planar embedding also have a planar embedding in which all the edges are a single
line segment between its vertex endpoints. This question motivates the first definition and
the first theorem of the paper.

3 Fary Embeddings

Definition 3.1 (Fary embedding). A Féry embedding is a planar embedding of a graph
such that all edges are a single line segment between its vertex endpoints.

Theorem 3.1 (Fary’s Theorem). All simple planar graphs have a Fary embedding. [5]

The idea of a Fary embedding will come to motivate the main algorithm in this paper,
but before getting to that point, it will prove instructive both to consider some examples,
and to prove Fary’s theorem outright. A good example to demonstrate the difficulty of the
problem is a lattice graph with one extra vertex, whose edges connect to the outer vertices
of the lattice. An example of this is shown in Figure 1. Clearly, any lattice graph is planar.
It is also easy to find a planar embedding for the lattice graph with the extra vertex, so long



/s ~_ T T ——
F T - T - I
[/ / 4'/ 2 ) \I/a N Rx.f \\) //
7 I L} !
/ R N l\ _ /s
|/
o P NP ’
el (o —e —(+)
\\\\ N A . M
\ I I
4 N . .
\ \{'{ G} ./H h () )
\ / L/ .
\ \ ,_fd___,,) ,_,ff}

Figure 1: Left: A planar embedding of a graph. Right: A Fary embedding of the same graph

as curved edges are allowed. Despite this, a procedure for transforming a planar embedding
into a Fary embedding is non-obvious, as evidenced by Figure 1. This example is only for a
three by three lattice graph, one can imagine that for larger and larger lattice graphs, finding
a valid Fary embedding could become exceedingly complicated to perform, perhaps at some
point even becoming impossible. This is where the proof of Fary’s theorem becomes helpful;
as a result, when given a planar graph, the algorithm can focus exclusively on outputting
the Fary embedding, without needing to consider whether the embedding outright exists.
We first state some elementary facts about planar graphs before proving Fary’s theorem.

Lemma 3.2. A mazimal planar graph with n > 3 has 3n — 6 edges.
Proof. This follows from Euler’s formula. [ |

Lemma 3.3. If G is a maximal planar graph with n > 4, then every vertex in G has a degree
of at least 3.

Proof. Consider some vertex v in G. G — v is also planar, and n — 1 > 3, so Lemma 3.2
holds for G — v. Hence m — deg(v) < 3(n — 1) — 6. Since G is maximal planar, m = 3n — 6.
3n —6—deg(v) <3n—9 = deg(v) >3 [2] |

Lemma 3.4. A mazimal planar graph with at least 4 vertices has at least 4 vertices with
degree less than or equal to 5.

Proof. Consider some maximal planar graph G with n > 4. Let the maximum degree of a
vertex in G be denoted as deg(G). Since G is maximal planar, m = 3n — 6, which implies
that 2m = 6n—12. Let n; be the number of vertices with degree 7, and let d be the maximum
degree of (. From the handshaking lemma, )" _ deg(v) = 2m, this can alternatively be
written as 2?21 i-n;. Finally, since n = Z?:l n;, we have that Z;j:l i-n; =06 Z?Zl n; — 12.
Rearranging, we see that Zf:1(6 —i)n; = 12. Notice that vertices with degree greater than
or equal to 6 do not contribute positively to this sum. And, by Lemma 3.3, each vertex has
a degree of at least 3. As a result, there must be at least 4 vertices with degree less than or
equal to 5. [2] |



The proof of Fary’s theorem now follows, by induction on the number of vertices in the
graph. We will prove the statement for maximal planar graphs, noting that for non-maximal
planar graphs we can simply add edges until it is maximal, find the embedding, and then
delete the extra edges to get a Fary embedding of the non-maximal graph.

Proof. First, note that if n < 3, then clearly there exists a Fary embedding, the most
complicated graph that could arise with only 3 vertices is K3, which is just a triangle. This
establishes the base case for our inductive proof.

Inductive Hypothesis: Consider some maximal planar graph with n vertices and an
associated planar embedding of the graph with vertices a, b, and ¢ on the unbounded face of
this embedding. Assume for all graphs of this type that there exists a Fary embedding of
the graph which preserves the same adjacency between faces as the original embedding, and
also has a, b and ¢ on the unbounded face.

Inductive Step: Consider some maximal planar graph with n + 1 vertices and vertices
u,v, and w on the unbounded face. By Lemma 3.4, there exists a vertex x not equal to u,
v, or w, such that the degree of x is between 3 and 5. Consider a planar embedding (V’, E')
of G. Removing x from G gives us a face F' whose vertices are the neighbours of x in G.
By the inductive hypothesis, we can construct a Fary embedding of G — x. The goal then
is simply to add x inside F', and connect it with straight lines to its neighbours. If F'is
convex, we can add x anywhere and connect using straight lines. If F' is not convex, then
it’s surrounding face is either a quadrilateral or a pentagon. From here, the argument boils
down to some geometric arguments, which will not be of much relevance to the following

algorithms. These arguments are therefore omitted, more detailed explanations can be found
in the book Graphs € Digraphs [2] |

What happened here? Essentially, once the previous lemmas have been stated, the proof
boils down to a simple inductive argument. We wish to pick a good vertex to induct on,
this is provided by Lemma 3.4. If we did not have a vertex of bounded degree, then the
polygon associated with the face of G —z could have had arbitrarily many edges. This would
complicate the geometric argument. Furthermore, if we could not ensure that there were at
least 4 vertices with a degree of at least 5, then we could have run into the situation where
u, v, or w is our vertex with low degree. Removing this vertex would have prevented us using
our inductive hypothesis, since we would no longer be able to ensure an isomorphism exists
between the faces of our two drawings. Using the inductive hypothesis essentially takes our
planar embedding and “straightens out” the edges, while preserving the overall structure of
the drawing. This allows the reinsertion of z in an appropriate place so as to construct a
Fary embedding for G.

This inductive style of constructing embeddings is one of the main ideas behind the
algorithm of Fraysseix, Pach, and Pollack. Of course, the proof requires that we first have a
planar embedding of the graph (possibly using curves), and finding this planar embedding
seems in the general case to be as difficult as finding a Fary embedding. Instead, the
algorithm will consider some cleverly selected sequence of subgraphs Gy, Gs, ...,G, with
|[V(Gy)| = k, such that the process of placing the extra vertex to get from Gy to Gyyq is
relatively simple.



Figure 2: A Tutte Embedding of the graph seen in Figure 1

4 Tutte’s Method

In How to Draw a Graph, Tutte proved a slightly stronger statement than Fary, this time
about simple planar 3-connected graphs, instead of simple planar graphs.

Definition 4.1. A graph G is k-connected if |V (G)| > k and there is not a set X C V(G)
with | X| < k such that G — X is disconnected.

Definition 4.2 (Tutte Embedding). A Tutte Embedding of a graph is a Fary embedding
such that the vertices on the outer face form a convex polygon, and each interior vertex is
located at the average position of its neighbours.

Theorem 4.1 (Tutte’s Spring Theorem). Given a 3-connected graph G, fix the position of
some vertices such that they form a convex polygon. From this starting embedding, there
always exists a unique Tutte Embedding, where the interior faces of the graph are always
convez. [10]

The proof of this theorem is fairly complex; we will not discuss it. However, note that a
very natural algorithm arises from the theorem’s description. To produce a smooth anima-
tion, one could repeatedly move vertices to the neighbours of their positions. Alternatively,
since each vertex needs to be moved to the average position of its neighbours, one could
rewrite the positions of the vertices as a system of linear equations which would be solvable
using some process such as LU factorization. An LU factorization takes the same running
time as matrix multiplication, so the current best running time for Tutte’s approach would
be approximately O(n?37), and this method could never run faster than quadratic time,
which leaves much to be desired. Furthermore, the algorithm arising from Tutte’s approach
requires high precision arithmetic, and vertices appear very close together. If the constraint



is added that each vertex has to appear on a grid, then the grid size becomes exponential [9].
An example of this can be seen in Figure 2. Beyond requiring high precision arithmetic
to store, this example demonstrates that although the Tutte Embeddings can often appear
pleasing if the graph has some level of symmetry, graphs without symmetry often end up
lopsided. In summary, although Tutte’s result is very elegant, as an algorithm it fails to scale
well as graph sizes increase. Additionally it begs the question as to whether bounds can be
improved with regards to the grid size required as well as the running time of the algorithm.
The answer to both of these questions turns out to be yes, as discovered by Fraysseix, Pach,
and Pollack.

5 The Main Algorithm

5.1 Canonical Orderings

This portion of the paper is where we describe the algorithm developed by Fraysseix, Pach,
and Pollack in their paper How to Draw a Planar Graph on a Grid. The algorithm’s func-
tion depends on the existence of a canonical ordering, which is an ordering of the vertices
that allows the embedding to be constructed incrementally with minimal adjustment to the
previous embedding at each step.

Definition 5.1 (Canonical Ordering). Let G be a maximal planar graph, with some Fary
embedding G’ such that the vertices on the unbounded face are u,v, and w. A canonical
ordering is a labelling of the vertices vy = u, vo = v, v3,, ..., v, = w such that for every 4 <
k < n, the subgraph Gj_; induced by vy, vs, ..., v;_1 is 2-connected, the vertices comprising
the unbounded face form a cycle Cy_; containing the edge uv, and the vertex vy can be
placed in the unbounded face and connected to adjacent vertices in Cj_4

This definition provides a good starting point for which to develop an algorithm. The
general procedure is to start with an embedding for GGz, which is a simple triangle, and then
progressively add vertices to the outside of the embedding, connecting them to adjacent
vertices on the outer cycle. Note by the fact that the vertices are adjacent on the cycle Cj_1,
we have to worry less about being able to reach all neighbours with straight lines, as opposed
to if they were on opposite sides of the cycle. Nevertheless, there is some care necessary in
the design and approach. First, we need to ensure that all maximal planar graphs have
a canonical ordering. Then, we need to ensure that the next vertex v, can inserted in a
convenient position on the grid such that it can be connected to all of its neighbours, or
if this is not possible, that some parts of the embedding can be adjusted to achieve this.
Finally, we’ll need to analyze time and grid size requirements to ensure that this algorithm
does actually outperform previous approaches such as Tutte’s method. Thanks to the work
done in How to Draw a Planar Graph on a Grid, we have proof that all of these conditions
are satisfiable. We start with the crux of the algorithm: the existence of a canonical ordering.

Theorem 5.1. Every mazimal planar graph has a canonical ordering. [6]

Proof. This is done by induction, choosing v, as the base case, and using an inductive
hypothesis to label vertices up until vs3. To begin, by the nature of u,v, and w being on



the unbounded face of the graph, we can simply let v, = w, and choose to let G,,_; be
the subgraph of G — w. By the fact that v and v were on the unbounded face in G, after
removing v, we have that they are contained in a cycle on the unbounded face in G,,_;.

As an inductive hypothesis, assume that we have determined the canonical ordering from
v, up until some vertex vg,;. Consider the unbounded face in the subgraph Gy which is
given by V(G) \ {vk+1, .., vn}. This unbounded face forms a cycle Cy. There exists some
vertex on this cycle y such that y # u, y # v, and y is not an endpoint of any chord of Cj
(a chord is defined to be two vertices ¢; and ¢; on Cj, such that the edge ¢;c; is present, and
c;cj is not an edge of Cy). This can be proved by a simple minimality argument. If there
are no chords in C}, then this is simple. On the other hand, if there are, we can choose a
chord that “bridges” the shortest distance, i.e, if we label the vertices of C}, as ¢y, ..., ¢, then
we choose the chord defined by the vertices ¢; and ¢; such that j — ¢ is minimal. Note that
we must have j > 7 + 1, otherwise the vertices are just adjacent. But then c¢;.; is not an
endpoint of any chord, otherwise we would contradict minimality. We can choose ¢;;1 to be
vk in our canonical ordering, and we satisfy the desired properties. It is not equal to u or
v since those are the first and last vertices in our cycle, and we explicitly chose it to be in
between two other vertices. By the nature of it not being adjacent to any chords, we have
that V(G) \ {vk, Vk41, ..., vn } still has a cycle comprising the unbounded face, which contains
the edge uv. Hence, this satisfies the properties necessarily, and we can induct until vz as
necessary. [6] |

Essentially, through some simple arguments using chords, we can guarantee this canonical
ordering exists as necessary. I believe it is important to mention the implicit assumption
that was made in this proof that a Fary embedding exists for us to induct on. If Theorem
3.1 had not been proved, then we would not have a starting point to induct on, and so this
proof that a canonical ordering exists would have a large initial assumption.

5.2 The Shift Method

Having established the theory behind Fary embeddings and the idea of a canonical ordering,
we can now finally present the main theorem given by Fraysseix, Pach, and Pollack in How
to Draw a Planar Graph on a Grid.

Theorem 5.2. Any planar graph with n vertices has a Fdry embedding on the 2n — 4 by
n—2 grid. [6]

Proof. Assume that G is a maximal planar graph with n vertices. It suffices to prove this
theorem for maximal planar graphs since one could simply add dummy edges in order to
make it maximal planar, run the algorithm, and then remove those edges again in some
post-processing.

Choose some arbitrary face u,v,w to comprise GG’s unbounded face, and let v; = u,
Vg = U, 3, ...,U, = w be the canonical ordering of its vertices. Assume that at some step k
of the algorithm, we have the following invariants preserved:

1. vy is placed at (0,0) and vq is placed at (2k — 4,0)



2. If ¢; = vy,09,..., ¢y = v, denote the vertices on the outer cycle Cy, and x(c;) denotes
the x-coordinate of ¢;, then z(c1) < x(c2) < ... < z(cw);

3. The edges c;c;11 between adjacent vertices of the outer cycle all have slopes +1 or —1
(apart from ¢y¢,, = v1v,, which has a slope of 0 as necessitated by invariant 1). Note
that a corollary of this is that all vertices on the outer cycle have an even Manhattan
(|z1 — xa| + |y1 — y2|) distance from one another.

These invariants are powerful enough for us to prove the theorem as desired. We first
note our starting conditions and our ending conditions. We start at the step £ = 3. In
this case, we choose a Fary embedding we place v; at (0,0), vy at (2,0) and vg at (1,1),
and see that the necessary invariants are satisfied. When k = n, note that we have u, v, w
comprising the unbounded face. By invariant 1, we have that u = v; is at (0,0), and v = vy
is at (2n — 4,0), and by invariant 3, we have that w = v, is at (n — 2,n — 2), since then we
have that the slope of viv,, is +1, and the slope of v,,v5 is —1. Therefore, we know that if we
can preserve these invariants while also preserving the embedding as a Fary embedding at
each step, then we can prove that every planar graph has an embedding within an enclosed
area of 2n —4 by n — 2. It is important to note that nothing about these invariants actually
necessitates that all the vertices appear on the grid itself, which is to some extent one of the
most important features of this algorithm, since we already had the ability to Fary embed a
graph within any arbitrary area via Tutte’s method, with the crucial stipulation that vertex
positions are not integral. The fact that every vertex position is integral will arise from the
process of going from step k to step k£ + 1.

u=v, V=\V2
Figure 3: The newly placed vertex vy, unable to see ny or n; (figure adapted from [6])

To go from step k to step k + 1 we have to place to vertex vg,1, and connect it with its
neighbours via straight-line edges. As previously mentioned, the canonical ordering eases
this task slightly for us. We know all of v;,1’s neighbours lie on the outer cycle Cj, and we

8



know that all of its neighbours are adjacent to one another. Number the neighbours of vy,
as ni, ..., Ny, with the stipulation as in invariant two that the as the index of the neighbour
increases, so does its x position on the current embedding. We then know that if we were
to place the v, and connect it to its neighbours, the new outer cycle would consist of vy,
whatever vertices are between v; and ny, vk, ng, and whatever vertices are between n, and
vo. Therefore, in order to preserve invariant three, we require that the edge n,v; has a slope
of 1, and vyn, has a slope of -1. It therefore seems intuitive to extend lines out from n,
and n, with slopes of 1 and —1, respectively, find the intersection point, and place v; there.
By invariant 3, n; and n, have an even Manhattan distance from one another, and so the
lines extended from those vertices will intersect at a point on the grid. There is one small
obstacle with this approach however, it may fail to see some of the first and last neighbours
(see Figure 3 for an example). An easy way to fix this is to deform the graph slightly, so
that the slope of niny is slightly less than 1, and the slope of n,_1n, is slightly greater than
-1. This can be done by moving ns,ns, ..., ns—1 one unit to the right, and moving n,, ..., v,
(all vertices on the cycle Cy to the right of n,) two units to the right. However, we must be
cautious of the effect that this adjustment has on the embedding of G, by deforming the
previous embedding as such we may have introduced new crossings. To recover from this,
we will introduce another component to our algorithm, which is at each step keeping track
of which internal vertices need to be shifted if a vertex ¢; on the outer cycle is shifted.

We now consider three more invariants related to keeping track of vertices that must
be considered when shifting occurs. Assume that at some step k of the algorithm for each
vertex ¢; on the outer cycle Cy we have M ., C V(G) so that

(a) ¢j € My, if and only if j >4
(b) My, C Mie,, , C ... C My,

(c¢) For any non-negative numbers aq, g, ..., iy, if we sequentially translate all vertices in
M, ., a distance «; to the right, then the embedding of G, remains a Fary embedding.

Remember that our starting configuration at £ = 3 is that vy is at (0,0), vy is at (2,0),
and vs is at (1,1). Note that by our notation of denoting the vertices of the cycle C} as
increasing by x-position, we have ¢; = vy, ¢co = v3, and ¢z = vy. We define Ms ., = {c3},
Ms ., = {co,c3}, and M3 ., = {c1, 2, c3}. This meets invariants a, b, and ¢, and so this works
as a starting place for our induction. Then, we choose the o quantities associated with ns
and n, to be 1, and all other a quantities to be 0. Performing the translation of all vertices
as necessitated by My, and My, vields a new Fary embedding of Gy, which allows us to
place v,y at the intersection of the lines extended from n; and n, with slope 1 and -1 as
previously described. This ensures that the invariants 1, 2, and 3 are preserved from before.
Now, if we can simply demonstrate a way of constructing the Mj; ., for the new outer cycle
Ci1 such that the invariants a, b, and c are preserved, then our algorithm will be complete.

For each ¢; on the outer cycle of Cy, 1 we define

Mk,ci U {Uk+1} ZE(CZ) < C(Z(?}k+1)
Mit1,e; = § My, U{vk1} ¢ = v

My e, x(c;) > x(vgt1)



By construction, the invariants a and b hold. It is our final task to prove that the
invariant ¢ holds as well. By induction, we have that the motion of the vertices contained
inside the outer cycle of G continue to produce a Fary embedding if all shifted to the right
as described in invariant 3. And, the portion of Gy for which this doesn’t apply, (i.e, Vi1
and it’s neighbours) are all defined to move the same amount by the definition of Mg,
(they all move a distance of a(c1) + a(cz) + ... + a(ny) + a(vgy1)). As a result, we can be
confident that any shifting which may be necessary in adding v;,» will be possible, since all
of our invariants are preserved [6]. |

The proof of this theorem gives an algorithm to Fary embed a maximal planar graph
on a 2n — 4 by n — 2 grid. There are some other details to consider here for practical
implementation. For example, can we quickly test that a graph is planar so that we can
reject bad inputs? We also glossed over the task of finding the canonical ordering of the
graph. Neither of these questions turn out to pose major obstacles. There exist many
planarity-testing algorithms which run in linear time. The process of finding the canonical
ordering can be treated as a traversal problem, and since planarity enforces a linear number
of edges with respect to the number of vertices, this can also be made to run in linear time [6].
As a final piece of analysis for the algorithm we described, we can find a simple upper bound
for the running time as O(n?), since we have n steps and in each step we may have to iterate
over all vertices that have been placed in the previous iterations. In the worst case, we are
on step n, and iterating over n vertices, giving us the O(n?) running time.

6 Further Developments

One improvement that was made in How To Draw a Graph which was not described in this
paper is the improvement of the running time to O(nlogn). This is achieved by refraining
from performing each embedding, instead only keeping necessary information in the form of
inductively defined permutations. These permutations allow a simpler way of querying for
the elements in the M, ., subsets, which allows finding the coordinates of the next vertex to
be inserted in logarithmic time instead of linear time [6].

Further papers have also been published reducing the running time and grid size required.
Within a couple years after How To Draw a Graph was published Chrobak and Payne
published an improved algorithm which modifies the shifting strategy slightly and uses a
system to anchoring vertices to a specific parent, which allows for linear running time [4].
Since then, many papers have been published reducing the size of the grid requirements.

Chrobak and Nakano later proved that each dimension of the grid must be at least L@

They also provided an algorithm to embed a graph on a L@J by 4 L@J — 1 grid [3].
The most recent improvement that I was able to find was by Brandenburg, who improved
the required area to just gnQ [1]. Tt is still an open problem whether any planar graph can
be embedded using just %n2 area. One other interesting open problem is that of Harborth’s
conjecture, which states that every planar graph has a Fary embedding in which all edges
have integer lengths [7]. If this conjecture does eventually get proved it will be interesting

to see whether the proof naturally describes an algorithmic approach, or if further work will

10



be done to yield a useful algorithm, as was the case with the proof of Fary embeddings to
the development of the shift method.

7 Conclusion

This paper has discussed straight-line planar drawing algorithms in depth, proving the exis-
tence of a Fary embedding for all planar graphs, describing Tutte’s method which can find
Fary embeddings but only with exponential grid size, and finally covering Fraysseix, Pach,
and Pollack’s work to draw any planar graph on a 2n — 4 by n — 2 grid. I believe that
the problem of straight-line planar graph drawing is one which demonstrates an interesting
contrast to those that we studied during this term’s offering of CS 466. For example, in CS
466, a large portion of the course focused on the study of randomized algorithms. These
algorithms often required little insight into the structural features of the problem itself. For
example, Karger’s algorithm picked and contracted edges completely randomly, little under-
standing was needed of the problem to create the algorithm. Another example is the “fix-up”
algorithm for solving the k-SAT problem; trying random configurations of variables is not
one that requires any insight into the way which variables are related. The difficulty here
arises from the analysis of the performance of the algorithms, for example, Moser’s proof
using random bit compression is highly unique and non-trivial. This contrasts the work
demonstrated in this paper. To explain and prove the algorithms in this paper, we required
lots of theory about Fary embeddings and canonical orderings to be established before a
discussion about algorithms could arise. In the randomized algorithm case, a very simple
approach can prove effective so long as it’s backed up by a rigorous analysis, whereas in the
deterministic case we require rigorous analysis of the problem before an algorithm can be
written. Of course, it would be asinine to assert that all randomized algorithms have sim-
ple inspiration; I found the multiplicative weights update method to be a highly insightful
and non-obvious approach, for example. But, it nevertheless forges some sort of dichotomy,
where in order for deterministic algorithms to still be relevant in modern algorithm design
and analysis, more and more clever insight will be required into the structure of a given
problem in order to make progress. This is as opposed to the approaches we saw in CS 466,
which are all relatively modern and so may not have been as exhaustively attempted as the
simpler approaches taught in CS 341.

11



References

1]

2]

[9]

[10]

Franz J. Brandenburg. Drawing planar graphs on §n2 area. Flectronic Notes in Discrete
Mathematics, 31:37-40, 2008.

Gary Chartrand, Linda Lesniak, and Ping Zhang, Graphs & Digraphs Fifth Edition.
Chapman and Hall/CRC, Baton Rouge, 2011.

Marek Chrobak and Shinichi Nakano. Minimum-width grid drawings of plane graphs.
Comput. Geom. Theory Appl., 11:29-54, 1998.

Marek Chrobak and Thomas Payne. A linear-time algorithm for drawing planar graphs.
Inform. Process. Lett., 54:241-246, 1995.

Istvan Fary. On straight lines representation of planar graphs. Acta Univ. Szeged. Sect.
Sci. Math., 11:229-233, 1948.

Hubert de Fraysseix, Janos Pach, and Richard Pollack. How to draw a planar graph on
a grid. Combinatorica, 10(1):41-51, 1990.

Arnfried Kemnitz and Heiko Harborth. Plane integral drawings of planar graphs. Dis-
crete Mathematics, Graph theory), 236 (1-3): 191-195, 2001.

Teo Paoletti/MAA, 2011: Leonard Euler’s Solution to the Konigsberg Bridge Problem.
Accessed 8 August 2020, https://www.maa.org/press/periodicals/convergence/
leonard-eulers-solution-to-the-konigsberg-bridge-problem

Roberto Tamassia. Handbook of Graph Drawing and Visualization. Chapman &
Hall/CRC, Baton Rouge, 2016.

William T. Tutte. How to draw a graph. Proceedings London Mathematical Society,
13(52):743-768, 1963.

12


https://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-konigsberg-bridge-problem
https://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-konigsberg-bridge-problem

	Introduction
	Preliminaries
	Fáry Embeddings
	Tutte's Method
	The Main Algorithm
	Canonical Orderings
	The Shift Method

	Further Developments
	Conclusion

