
Lua to WASM Compiler - Documentation
ROSS EVANS
1 INTRODUCTION
My project for the term was to compile Lua programs into the
WebAssembly format. There were a couple of motivations behind
this. For one, I have not yet been fortunate enough to take a graduate
level compilers course, so all my knowledge in compilers came
from UW’s CS 241 course. The CS 842 project seemed like a good
opportunity to supplement my knowledge in compiler development.
Furthermore, the compiler I had implemented in my undergrad was
fairly simplistic. This compiler was statically typed with only two
types: integers and closures. This marks a big difference from Lua’s
support for integers, floats, booleans, tables, function closures, and
nil values. I had never implemented a compiler for a dynamically
typed language, nor I had ever written a garbage collector. My goal
for this project was to gain experience in each of these areas.

In terms of language choice I chose Lua and WebAssembly for a
couple of reasons. Lua was chosen because it is a relatively simple
language, and one that I have good knowledge of the semantics
of thanks to previous experiences using it for game development.
WebAssembly was chosen as a learning opportunity for me. Despite
working as a web developer professionally and recreationally for
over 7 years now, I had never touched WebAssembly before this
project. I saw writing a compiler as a good way to dive head first
into learning how WebAssembly’s virtual machine works, what
functionalities it supports, and what considerations need to be made
when using WASM as a compilation target.

2 INSTALLATION INSTRUCTIONS
The compiler is written in TypeScript. As a web developer by trade,
I am most comfortable with the JavaScript/TypeScript ecosystem,
and thought it would be a natural choice for the project’s large
undertaking.

To compile a module, a number of dependencies are first needed.
(1) Install NodeJS if it is not already installed on your machine
(2) Install the Web Assembly Binary Toolkit. If on Mac with

Homebrew installed, brew install wabt suffices.
(3) The node package manager npm should be included in your

NodeJS installation. You can then use npm install from
the project directory to install some dependencies specified
in package.json (typescript, antlr, etc.).

(4) Run npm run build from the project directory to build the
TypeScript into JavaScript

(5) Then, you can use the script compile.sh to compile a pro-
gram. E.g, ./compile.sh testPrograms/primes.lua. This
generates a file called compiled.wat in the current direc-
tory, which is the output of the compiler. It also automati-
cally uses the WABT’s wat2wasm utility to convert the out-
putted text format into a binary, and moves the binary to
web/compiled.wasm

(6) Finally, one can run the assembly through the included
JavaScript runtime. Doing so requires one to host the page

Author’s address: Ross Evans, rpevans@uwaterloo.ca.

included in the web directory. An easy way to do this is
to navigate into the web directory and run python3 -m
http.serverwhichwill launch a local server on localhost:8000.

(7) Navigate to localhost:8000 in Google Chrome or Firefox
and click the run program button to execute the WASM
code.

3 ORGANIZATION OF THE COMPILER
The compiler is implemented in essentially four steps.

(1) Parse Tree Construction
(2) AST construction
(3) AST annotation
(4) Code generation
Construction of the parse tree is done by the open source parser

generator ANTLR. There is a Github Repository for ANTLR which
contains a list of grammars for a variety of different languages. I
modified this grammar slightly to provide it with some additional
annotations, and to remove some features that I did not intend to
support, such as variable attributes, which were a new addition in
Lua 5.4. The file src/antlr/Lua.g4 contains my modified version;
the remaining files in src/antlr are all automatically generated by
the ANTLR executable. Using this open source tool saved me a large
amount of time on the project, which I was grateful for, since the
focus of the project was on the compilation and the WebAssembly
target rather than parsing.

The second step performed by the compiler is AST construction.
Parsing via ANTLR is convenient, but working with the parse tree
it generates is not. For one, the Lua grammar can have quite com-
plicated derivations for even simple language constructs. The rule
for a variable follows below:
var

: (NAME | '(' exp ')' varSuffix) varSuffix*
;

varSuffix
: nameAndArgs* ('[' exp ']' | '.' NAME)
;

nameAndArgs
: (':' NAME)? args
;

args
: '(' explist? ')' | tableconstructor | string
;

As one can see, a variable is either a simple name, or an expression
with a varSuffix. The (’[’ exp ’]’ | ’.’ NAME) is what allows
indexing of Lua tables, but even that might be the result of a function
call as a result of nameAndArgs. I realized early on that dealing with
a parse tree like this would be too unwieldy, and I needed my own
AST to simplify things.

https://nodejs.org/en/
https://github.com/WebAssembly/wabt/releases
https://www.antlr.org/
https://github.com/antlr/grammars-v4

2 • Ross Evans

Creating my own AST also allows me to perform transformations
before annotations or code generation. For example, Lua supports
the following syntax for a numeric for loop:

for i = 1, 10 do
print(i)

end

This prints out the integers from 1 to 10. The Lua 5.3 Reference
Manual details a transformation of this into simpler primitives.
When presented with an ANTLR subtree for:

for v = e1, e2, e3 do block end

I translate this into:

do
local var, limit, step = e1, e2, e3
var = var - step
while true do

var = var + step
if (step >= 0 and var > limit)

or (step < 0 and var < limit) then
break

end
local v = var
block

end
end

I also do similar transformations for Lua’s generic for loop syn-
tax (which is used to implement iterators), and Lua’s repeat-until
statements. This allows all “looping code” to be implemented solely
in the form of while loops.
Another example that demonstrates the benefit of creating my

own AST from ANTLR’s parse tree is de-sugaring function defini-
tions. The following two function definitions are equivalent:

function f()
block

end

f = function()
block

end

However, the derivation for the first is simply chunk -> block
-> statement -> function funcname funcbody, whereas the
second is chunk -> block -> stat -> varlist = explist,
with varlist -> var and explist -> exp -> functiondef ->
’function’ funcbody. Despite being semantically equivalent, the
parse trees are remarkably dissimilar. Creating my own AST allowed
me to ensure that both of these definitions had the same canonical
representation inside of my AST.
The code to generate my AST based off of ANTLR’s parse tree

is located inside src/AntlrVisitor.js. The compiler is mainly
written in TypeScript, but unfortunately ANTLR does not provide
type definitions for the parsers that it generates. I isolated the por-
tions of my compiler using ANTLR into src/AntlrVisitor.js
and src/main.js so that the rest of the compiler could fully use
TypeScript.

The third step in the compilation process is AST annotation. Lua
is weakly and dynamically typed, so there isn’t anything to do in
terms of static analysis. A typical Lua implementation runs inside
of an interpreter, and semantic errors are sent to this interpreter at
runtime [Ierusalimschy 2004]. In the case of my compiler, programs
with errors simply result in undefined behaviour. This is revisited
in the Further Improvements section.
AST annotation occurs in three steps via the ScopeVisitor,

StringVisitor, and IndexVisitor classes. Each of these classes
inherits from an abstract AstVisitor class, and each ASTNode con-
tains an accept method which in general calls a visit method
for this particular type of AstNode on the AstVisitor, recurses
on its children, and then calls a leave method for this particular
type of AstNode on the AstVisitor. This use of the visitor pat-
tern allows me to write custom behaviours for each type of visitor
while reusing the general tree traversal code. Furthermore, visitors
can maintain internal state, and the code for a particular type of
visitor can be self-contained rather than scattered among ASTNode
implementations.
The StringVisitor and IndexVisitor are both fairly simple.

The memory layout is discussed further in Memory Layout sec-
tion of the document, but essentially, we need to create a data
segment storing any strings that may be used in the program, since
WASM has no native support for strings. The StringVisitor sim-
ply looks for instances of StringNode, which represents a string
literal in the program, and for use of global variables, which are im-
plemented in terms of a string lookup in a global table, and creates
a set containing all of these strings. The IndexVisitor simply as-
signs each Function and WhileStatement in the AST an index, and
associates BreakStatements with the index of the corresponding
WhileStatement it is breaking out of.

The ScopeVisitor does the work of determining whether a vari-
able is in scope or not, as well as which frame it belongs to. An
example might look like:

local a = 1
local function f()

print(a)
print(b)
local a = 2
b = 5
print(a)
print(b)

end
f()
print(a)
print(b)

Variables in Lua are global by default. The first call to print(a)
should print 1, since a is not yet declared in f, but there is a definition
of a in the enclosing lexical scope. The first call to print(b) should
print nil. We search for a global variable in the global table in this
case, and find nothing. After the declaration of local a = 2 and b
= 5, we should print 2 and 5 respectively. After f is done, we should
print 1 and 5, since setting local a = 2 does not affect the a in the
outer scope, but setting the global does.

https://www.lua.org/manual/5.3/manual.html
https://www.lua.org/manual/5.3/manual.html

Lua to WASM Compiler - Documentation • 3

The ScopeVisitor walks through the parse tree, maintaining a
stack of functions, and of blocks. Functions are assigned a nesting
depth as they are traversed.When a local assignment is encountered,
we register the variable name with its surrounding block and its
surrounding function, so long as it’s not a redeclaration. When
encountering the use of a variable, either in a non-local assignment,
or an expression, we iterate through the stack of blocks to determine
whether it’s a local or global variable. If it doesn’t exist in the stack of
blocks, then we know it’s a global access, and we can transform this
at the AST level to a field access in the global table. If it does appear
in the stack of blocks, then we can note the use of the variable as
local, and also compute which function the variable was initially
declared in. If the variable was used in a nested function, but defined
in the enclosing function, then during code generation the variable
won’t be found in the current stack frame, it’ll be found in the
statically enclosing stack frame.

Having annotated the AST with all the pertinent information, we
can now perform the code generation step. The CodeGeneration
class handles the layout and formatting of the Web Assembly Text
(WAT) file. It includes a number of WASM functions to do things
like hashing, memory allocation, and checking variable equality.
Finally, it uses the CodeVisitor class, to traverse the tree and
do the majority of the brute work. The CodeVisitor maintains an
array functionWasms which, after having traversed the AST, stores
the instructions in the WAT format for each function found inside
the program. These instructions are inserted into theWAT output by
the CodeGeneration class, the CodeGeneration class then returns
a fully formed WAT program to main, which is printed to stdout.

4 WASM EXECUTION
To discuss what the compiled code does at run-time, we have to con-
sider what functionality WASM supports. Unlike the architectures I
had previously studied, which were all types of register machines,
WASM is executed via a stack machine [Contributors 2022]. The
types that can be used in this stack machine are very limited how-
ever; any value on the stack must be a 32 or 64 bit integer or floating
point number. Of course, this is insufficient for more complex data
types, so there is also the option to use WebAssembly Memory:
which is just a block of linear memory (my runtime ended up initial-
izing just 1 64KB page to ensure that I could easily trigger garbage
collection).
There is no inherent structure enforced within this linear mem-

ory, it is entirely up to the WASM being executed to ensure any
invariants. In addition to the stack machine and linear memory,
WASM also supports mutable globals that can be fetched or set at
any point throughout execution. My solution to the memory layout
problem was therefore to mimic other architectures: my memory is
divided into a data segment, a stack, and a heap. The data segment,
as previously mentioned, is never written to and stores strings that
are known to be used within the program. The stack is used for
intermediate computations with complex Lua values. For example, a
call like f(x) would first evaluate f for the closure value, push this
onto the stack, evaluate x, which could be of any type, push it onto
the stack, call the associated function, and then pop the two values.
WASM’s stack is unfortunately insufficient for dealing with these

more complex value types. Finally, the heap is used for dynamic
memory: I store some information in the heap for all Lua types
apart from int, boolean and nil. We then use the mutable globals
to keep track of a stack pointer, a heap pointer, and a frame pointer.

4.1 Lua Types
This section will discuss the implementation of the various types
defined in Lua. Since Lua is dynamically typed, one must be able
to reassign any variable to one of a completely different type. This
poses a potential challenge if the variables are of different sizes. My
solution for this was to ensure that all variables could be stored
using an 8 byte representation. The first 4 bytes always stores the
type of the variable in a 32 bit integer. The latter 4 bytes then stores
the "value" of the variable. In the case of Lua’s integer type, it is the
integer. For booleans, it’s 0 for false, 1 for true. For the nil type, 0 is
always stored in the value. And finally, for all other types, a pointer
is stored to some location in the heap containing further informa-
tion. This means that assigning one variable to another is as simple
as overwriting 8 bytes. Furthermore, this is aligned with the descrip-
tion given in the Lua 5.3 Reference Manual: it notes that "Tables
and functions are objects: variables do not actually contain these
values, only references to them. Assignment, parameter passing, and
function returns always manipulate references to such values; these
operations do not imply any kind of copy." [Roberto Ierusalimschy
2015] Strings, being immutable in Lua, also can simply be assigned
by overwriting the 8 byte variable.

Given that the types of my variables can only take on 9 possible
values, I will acknowledge that it is somewhat wasteful to use an
entire 32 bit integer on them. For example, the nil type could easily be
represented with just a 4 byte sequences of all zeros; the associated
value type for nil doesn’t really achieve anything. I did this for
memory alignment reasons however. Initially I did attempt to store
some types, like nil, and an internal pointer type using just 4 bytes.
However, upon evaluating some number of expressions on the stack,
it became difficult to determine what number of bytes to be popped
if it was a mixture of 4 byte and 8 byte values. Further improvements
to this compiler could investigate packing the type of a variable in
a more condensed manner.

4.1.1 Strings. Strings in Lua are read-only sequences of bytes. The
value inside of a string variable is a pointer to either the heap or
the data segment. Stored at this memory address is a 32 bit integer
representing the number of characters in the string, which is imme-
diately followed by a sequence of 1 byte characters. When a new
string is allocated on the heap, for example, when two strings are
concatenated together, we ensure that the heap pointer is adjusted
not only by the length of this string object, but also by any extra
space needed to ensure the heap pointer is 4 byte-aligned.

4.1.2 Functions. Functions in Lua are first class values. As such,
we have to be able to store functions inside of variables, and freely
reassign them to one another. The value inside of a function is a
pointer to the heap. Located in the heap is another 8 byte structure.
The first 4 bytes is a 32 bit integer representing the index of the
function. To allow for first class function values, WASM supports
a call_indirect instruction. To use call_indirect requires that

4 • Ross Evans

a WASM table is defined, which just lists whichever WASM func-
tions you may wish to dynamically call in a canonical order. The
call_indirect instruction then takes in an integer, which corre-
sponds to the function at that given index in the WASM table. The
second 4 bytes is a 32 bit integer representing the environment of
the closure. For example:

function addBy(x)
return function(n)

return x + n
end

end
addBy5 = addBy(5)
print(addBy5(10))

In this case, our function variable addBy5 would have a func-
tion index of 2 (since it is the second function encountered in the
program). The 32 bit integer representing the environment would
be a pointer to addBy’s function frame. This allows addBy5(10) to
search for the parameter x even once addBy has finished execution.

4.1.3 Tables. Lua’s only type of data-structuring mechanism is the
table type, which functions as a map from any type (excluding nil) to
any other type. Before constructing my compiler I was unsure of the
actual mechanisms in which tables were implemented in Lua. Lua
4.0 simply used a hash table for all values, however Lua 5.0 onwards
separates the data structure into two parts: an array for keys with
integer values, and a hash table for all other keys. There is also an
intelligent algorithm for resizing to ensure that the array portion
is reasonably dense, i.e a[1000000] = 1 should not immediately
allocate an array of size 1000000. Due to time constraints, I ended
up implementing solely a hash table, akin to Lua 4.0.
The value associated with a hash table is a pointer to a 12 byte

collection stored in the heap. The first 4 bytes stores how many key
value pairs are stored inside the table. The second 4 bytes store the
total capacity of the table currently. These two values combined
allow us to determine when to resize our table. Finally, the last 4
bytes are another pointer, to a chunk of memory of size (capacity
times 16 bytes). Each 16 byte block stores an 8 byte key variable,
followed by an 8 byte value variable.
My hash function is simple: for all keys apart from strings, I

simply take the latter 4 bytes of the variable storing the value (for
integers and booleans), or the pointer (tables, functions) modulo the
capacity of the table. For strings I used a polynomial hash function,
multiplying each character of the string interpreted as an integer
between 0 and 255 by the prime 257 raised to the power of the
index of the character. Once again, we taking the value modulo the
capacity of the table. I compute this polynomial efficiently using
Horner’s method.
Having evaluated the hash function to get an index within the

hash table’s array, I attempt to store the key and value at that par-
ticular index. When collision occurs, I simply use linear probing to
find the next available slot. When the hash table array exceeds the
threshold of 1/2 full, I double the size of the array, round up to the
nearest prime, and rehash all the elements from the old array into
the new array. Ensuring that the capacity of the array is always a
prime is to try and decrease collisions - since our key for the table

and function type is a pointer, which is always divisible by 4, we
may have clustering if we used a composite capacity.
Further work would be valuable to determine the efficiency of

this implementation over different types of data. Given the time
constraints I was only able to check for correctness, not efficiency.
It would also be valuable to employ some strategy like Lua 5.0 to
ensure that the table is fast even if only used with dense integer
keys.

4.2 Functions and Scoping
Functions may need to access variables outside of their immediate
scope in Lua: this is a result of Lua supporting closures and nested
functions. I implemented functions using frames: when a function
is called, it allocates space for a function frame, which is 12 bytes,
followed by 8 bytes times the number of local variables declared
inside the function. The first 4 bytes of the function frame is the
static link, it points to the frame of the enclosing function (code
written outside of any function is permitted in Lua, in which case
the static link is set to -1). The second 4 bytes is the dynamic link,
which is what allows us to reset the frame pointer FP to the function
caller upon return. Finally, the last 4 bytes contain the number of
local variables, which allows us to determine the size of the frame
during garbage collection.

As seen earlier in the case of addBy, if we were to allocate addBy’s
frame on the stack, then when we call addBy5(10), the variable x
stored in addBy’s frame would have already been popped. Functions
therefore cannot be implemented on the stack for variable lifetime
reasons. I allocate all function frames on the heap; frames which are
not referenced in any form are cleaned up during garbage collection.
A more optimized compiler could likely do some static analysis to
determine when closures could be created, and only allocate frames
on the stack if necessary. For the sake of time and simplicity, I simply
maintain that all function frames are on the heap.
We annotate in the AST whether a variable is local or global. If

a variable is local, we also know which function it is used in, and
which function it was declared in. We can compute via the difference
in nesting depths how many times to follow the static link. If it was
declared and used in the same function, the nesting depth is zero,
so the variable can be found in this frame. If the it was declared
in a higher function, then we follow the static link the number of
times corresponding to the difference between the functions nesting
depths, this gives us the frame where the variable was declared, and
we can then access the variable as its predefined offset.

The dynamic link is simple to compute, it is simply the current
frame pointer. We compute the static link once again depending
on the nesting depths. If we are calling a nested function, then we
are the enclosing function, so we pass the caller’s frame pointer as
the static link. If we are calling a sibling function, then we share
an enclosing function, so we forward our static link to our sibling.
Finally, if we are calling out to an enclosing function, we calculate
the difference in the nesting depths (call it 𝑛), and forward our static
link after following it 𝑛 times.

Lua to WASM Compiler - Documentation • 5

4.3 Return Statements
One of Lua’s nice features is that it has native support for multiple
return values - rather than needing to packagemultiple return values
into an array or a dictionary like structure, a function can simply
do something like:
function f()

return 1, 2
end

I have often wondered why it is that other languages do not
support this sort of construction, which can be very convenient
as a programmer. I know now that it is because it is a pain to
implement. Functions returning multiple values has a large impact
on the semantics of the language. For example:
function f()

return 1, 2
end
function g(x, y)

print(x)
print(y)

end
g(f())

Lua specifies that in this case, the function g should be called
with the arguments 1, 2. However, in another case:
function f()

return 1, 2
end
function g(x, y, z)

print(x)
print(y)
print(z)

end
g(f(), 3)

This prints out 1, 3, nil. The Lua standard states that if a function
call is the last thing in a list of expressions, then all of its return
values should be used - otherwise, only the first return value is used
and the other is discarded. However, in the construction of tables,
one can do something like this:
myTable = {-100, x = "Hello", true, f(), y = nil}

Inwhich case, we should have that myTable[1] = -100, myTable.x
= "Hello", myTable[2] = true, myTable.y = nil, and the values
myTable[3], myTable[4], and onwards are filled with the multiple
return values of f.

To implement this, I created a type used internally, called ReturnArray.
A ReturnArray’s value is a pointer to the heap, which contains a
4 byte capacity, followed by 8 byte variables for each value being
returned. When a function is called, it always pushes a ReturnArray
on the stack. For each function call in the AST, I annotate it with
how many return values are needed. If the entire statement is just a
function call, we generate code to immediately pop the ReturnArray
from the stack. If it’s used in an expression context, or in an expres-
sion list where it isn’t the final element, then we fetch the first value
inside of the ReturnArray and replace the ReturnArray with this
value on the stack. Finally, if the function call is the last expression
in an expression list, then the ReturnArray is left on the stack, and

it is assumed that the ASTNode that evaluated the expression list
can handle the ReturnArray type.

Looking at another example:

function g()
return 5, 6
end
function f(x, y, z)
end
f(1, 2, 3, 4, g())

It is completely legal for functions to be called with extra argu-
ments in Lua, those arguments are simply discarded. This poses
a challenge for allocating the frame of a function: we need to be
inside the function declaration to know how much space to allocate
for the frame, but once we’re in the function, we no longer know
the number of arguments it was called with. The solution is that
function calls not only push each argument onto the stack, but also
an integer for the number of arguments in total. The function call
prologue then has to be able to look through each argument given,
copy it into it’s own frame, while also handling that the last argu-
ment given might be a ‘ReturnArray‘, in which case it will need
to start copying values from the heap. If at any point we run out
of arguments in the frame to copy into, then the rest should be
discarded, and if it any point we run out of arguments provided to
the function, then we have to set the remaining arguments in the
frame to nil.
In short, having dynamic number of arguments and dynamic

number of return values is complicated.

4.4 Output
Lua provides the print function as a primitive to print to stdout.
WASM does not have any native support for I/O, so this was handled
by using imports. A WASM module can specify a list of import
functions which must be provided by the client who is executing the
program. All programs that I compile must import a function called
print. WASM requires type signatures on each of its functions, so I
specify that the print function takes in a 32 bit integer, which I use
to pass in the memory location of the variable to be printed. The
WebAssembly memory can be used not only from within the WASM
module, but also within the JavaScript which instantiates and runs
the module. This allows the print function to fetch the variable given
its memory location, it can inspect the type of the variable, from
the type determine the expected formatting, and finally, append the
output to the DOM. The behaviour of Lua’s print function can be
completely customized by a client to suit the needs of their web
application.

4.5 Garbage Collection
Garbage collection was one of the things that I hoped to implement
for the compiler: it becomes especially necessary with all of my
function frames being placed in the heap. I was able to write an
implementation for garbage collection, but I ended up doing it in
the JavaScript runtime rather than as part of the compiled code.

Whenever a request is made for memory by the compiler, it calls
an alloc function with the number of bytes requested. This alloc

6 • Ross Evans

function always increments the heap pointer by said number of
bytes, but before doing so, it calls to an imported function gc.
My basic function gc implements a stop and copy garbage col-

lection method: it divides the heap into two halves, the from-space
and the to-space. If the request for the number of bytes would
cause the heap pointer to write outside of a half-space, then the
garbage collection runs. The live set in this case can be determined
recursively from the frame pointer. The frame pointer gives us the
frame of the current executing function, and we can then determine
the entire call stack by following the dynamic link. We then begin
copying frames into the to-space from the bottom of the call stack
upwards. We maintain a list of pointer intervals, which describe
how pointers in the from-space map to memory locations in the
to-space. Whenever we copy heap memory over, we update the list
of pointer intervals accordingly. If a variable is stored inside of a
function frame, it is considered live. For simple types like integers,
booleans, and nil, we can simply copy the variable from the old
frame to the new frame. For strings, if the string is not located in
the data segment, and its pointer isn’t located in any of the stored
pointer intervals, then we must copy the string’s data into the to-
space. Tables have to have their data copied into the to-space, and
we recursively copy each key value pair. Finally, a function closure
might have an environment which is no longer part of the call stack,
in which case the frame given by this environment pointer should
be copied, which will then recursively copy its call stack as well.
Having copied over the live portions of the heap, we then it-

erate through all variables on the stack, and update any pointers
accordingly from the pointer interval map.
Time constraints were a key factor in implementing gc in the

JavaScript runtime; I didn’t think I had enough time to implement it
directly in the WebAssembly module. However, it also affords some
niceties. For one, it can be seen as a feature of the compiler itself: just
as with the imported print function, if you don’t like the garbage
collection given to you, you are free to implement your own. Lua is
often used in game development, an example where onemight desire
this functionality to customize the garbage collection is if stop and
copy is too inefficient; with garbage collection being a somewhat
slow process, we would not want it to cause a frame drop in the
game being played inside the browser. Furthermore, implementing
garbage collection in the runtime is faster and easier which can allow
one to easily prototype and determine which garbage collection
algorithm works best for a particular use case.

A further improvement to this compiler might be including a flag
to toggle between garbage collection through the JavaScript runtime
and some garbage collection written directly into the compiled
WASM module.

5 FEATURES SUPPORTED
My initial project proposal was that I would compile a subset of
Lua to WebAssembly, so this section intends to detail exactly the
features I support, with the Further Improvements section detailing
what would be necessary to implement the remaining features.

• Integer, boolean, string, nil, function, and table values
• If statements, While loops, Repeat-Until loops, Numerical

For loops, Generic For loops over iterators

• Tables as maps from any type of non-nil key to any type of
value

• String concatenation
• Assignment between variables of different types
• Well-defined equality checks between any types
• Functions as first class values with lexical scoping
• Functions returning multiple values
• Forwarding of multiple return values in return statements

and function arguments
• Boolean operators and and or with short-circuit evaluation,

as well as not
• Boolean operators over integers: addition, subtraction, mul-

tiplication, division, modulo, less than, greater than, less
than or equal to, greater than or equal to

• Garbage collection
• Primitive functions print and ipairs

6 FURTHER IMPROVEMENTS
There are a number of remaining Lua language features that I un-
fortunately did not have time to implement. Some of these include:

6.1 Floats
Lua’s number type is generic, the language supports integers and
floating point numbers with conversions happening between the
two. I do not think this would be difficult to implement within the
compiler, it would just require run-time type checking during binary
operations, which is already done for things like equality.

6.2 Metatables
If an operation between two types is not defined, one can define a
function inside a metatable. For example, adding two tables together
would check to see if the __add field exists and is defined to be
a function inside of an associated metatable, calling it if it exists,
and throwing a runtime error otherwise. This would require some
further implementation though

6.3 VarArgs
Lua supports a syntax like the following:
function f(x, y, ...)

local vars = {...}
end

The function f can take any number of arguments, and any excess
arguments are placed inside of the array vars. I currently do not
have support for this. It would some re-engineering to do, since my
compiler currently assumes all local parameters are stored inside a
function’s stack frame. To support this I would likely need an extra
parameter pointing somewhere in the heap that contains the excess
variables, and the syntax ... would need to evaluate to an expression
list containing each element in the array. This is doable, but would
require some time to implement.

6.4 Standard Library and Primitive Functions
There are a number of primitive functions and standard library func-
tions that are left unimplemented. This was due to time constraints
over anything else. My compiler supports functions to have bodies

Lua to WASM Compiler - Documentation • 7

that are defined with custom assembly, this is how I implemented
the print primitive. One could easily implement these functions
using custom bodies, calling out to JavaScript if necessary.

6.5 Coroutines
One of Lua’s basic types is thread, which is used to implement
coroutines. I am unsure of how I would begin to implement corou-
tines. The intent of WASM is that it is safety, and as such, it has
no support for GOTO statements. All control flow in WASM is con-
trolled by functions, blocks (which can be jumped to the end of),
and loops (which can be jumped to the beginning of). Hence, any
use of coroutines would need to be translated at the AST level to
something describable by these primitives; I am currently unaware
of any algorithms to do this.

6.6 Error Checking
At the moment, any runtime errors simply result in undefined be-
haviour. The compiler could instead have the client provide an
imported error function, which would then be called whenever a
runtime error occurs. Most of the runtime errors occur due to invalid
typing: for example, a typo in the name of a variable could cause it
to be nil, which would then error if used inside of a binary operation,
function call, or a table index, etc. We would simply require code
generation to use type checks before any type of operation occurs,
calling the imported error function if the types are invalid. This
would not be difficult to support.

7 TAKEAWAYS
WebAssembly is an interesting target to compile for. I am as of
yet not convinced of the benefit of the stack machine architecture
compared to register architectures. After all, WASM’s support for
globals essentially allows one to define as many pseudo-registers
as one might want. One of WASM’s goals, it seems, is to be well-
typed and safe: functions have to specify their return types, the
wat2wasm tool gives errors if the number of arguments or types of
arguments to an instruction are incorrect, and there is no jumping
to arbitrary locations. From a compiler perspective though, I did
not really see these benefits. With WASM only supporting 32/64
bit integers and floating point numbers as types, I ended up doing
most of my computation inside of linear memory rather than on the
stack machine. This resulted in a larger number of instructions as I
was frequently loading and storing. Furthermore, I didn’t receive
any type safety benefits given that most of the manipulations I was
doing were on 32 bit integers that I was interpreting as pointers
to any one of my own types. One could argue that if my compiler
made better use of locals I could decrease the number of instructions,
which is definitely true. However, this would complicate garbage
collection since local variables (unlike globals) cannot be accessed
by the JavaScript runtime, so there’s greater risk of storing an old
reference to a pointer that has been moved. Given that the entire
point of WASM modules is that they run over the web, and hence
bandwidth is a primary concern, it seems strange that they would
choose an architecture that seems to naturally lead itself to a larger
number of instructions.

8 CONCLUSION
This has been an enjoyable project to work on. I have learned a lot
on the internal workings of both Lua and WebAssembly by building
this compiler, and am proud of what I managed to achieve over this
term.

REFERENCES
MDN Contributors. 2022. Understanding WebAssembly text format. https://developer.

mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
Roberto Ierusalimschy. 2004. 8.5 – Error Messages and Tracebacks. https://www.lua.

org/pil/8.5.html
Waldemar Celes Roberto Ierusalimschy, Luiz Henrique de Figueiredo. 2015. Lua 5.3

Reference Manual. https://www.lua.org/manual/5.3/manual.html

https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format
https://www.lua.org/pil/8.5.html
https://www.lua.org/pil/8.5.html
https://www.lua.org/manual/5.3/manual.html

	1 Introduction
	2 Installation Instructions
	3 Organization of the Compiler
	4 WASM Execution
	4.1 Lua Types
	4.2 Functions and Scoping
	4.3 Return Statements
	4.4 Output
	4.5 Garbage Collection

	5 Features Supported
	6 Further Improvements
	6.1 Floats
	6.2 Metatables
	6.3 VarArgs
	6.4 Standard Library and Primitive Functions
	6.5 Coroutines
	6.6 Error Checking

	7 Takeaways
	8 Conclusion
	References

