
The Subversion of CAPTCHAs
through Machine Learning

Algorithms

Word Count: 3990

!2

Abstract

 This essay examines the potential of machine learning as a means to subvert text-

distortion CAPTCHAs. The research question is: “Which machine learning algorithm can more

effectively solve text-distortion CAPTCHAs: ‘k-nearest neighbours’, or ‘classification and

regression trees’.

 The effectiveness of the machine learning algorithms was considered both theoretically,

and with a practical experiment. To practically demonstrate the effectiveness of each algorithm,

both were given 500 CAPTCHAs to solve. The CAPTCHAs were generated by an open-source

PHP script Securimage, though they were first processed with a custom written de-cluttering

script tailored to Securimage CAPTCHAs. Effectiveness was evaluated based on the percentage

of characters each algorithm was able to correctly identify within the CAPTCHA.

 It was found that the k-nearest neighbours algorithm was able to identify characters in

CAPTCHAs with a higher accuracy than the classification and regression trees algorithm. These

results are explained by the theory of each algorithms function. The data ultimately suggests that

the k-nearest neighbours algorithm is more effective than the classification and regression trees

algorithm for solving text-distortion CAPTCHAs.

Word Count: 179 

!3

Table of Contents

1 - Introduction 4
2 - Machine Learning 4
2.1 - K-nearest neighbours 6
2.2 - Decision Tree Induction 8
3 - CAPTCHAs 10
4 - Tests 11
4.1 - Simplifying Classification 12
4.2 - Creating Training Data 14
4.3 - Feature Selection 15
4.4 - Analysis 16
4.5 - Limitations 18
5 - Conclusions 20
Appendix A - Training Data 22
Appendix B - Machine Learning Script 22
Works Cited 33

!4

1 - Introduction

 As computer technology has advanced throughout the years, computers have been able to

perform more complex tasks. Machine learning is one advancement in computer science that

gives computers greater problem solving ability. The field allows computers to recognize

patterns in data, much like humans do. This has a wide variety of applications in many different

fields; for example, machine learning has been used to both beat the Go world champion, and

also as a tool for early stage cancer detection (DeepMind; Kourou, et al. 8). Two common

machine learning algorithms were investigated: “k-nearest neighbours”, and “classification and

regression trees”. The investigation was centred around solving CAPTCHAs with these

algorithms. A CAPTCHA is intended to be solved by only humans. This ensures that bots cannot

abuse web services with spam, for example. If machine learning algorithms can solve

CAPTCHAs with a degree of reliability, it identifies a fundamental flaw within the CAPTCHA

system.

2 - Machine Learning

 Machine learning is a field of computer science study that focuses on giving computers

“the ability to learn without being explicitly programmed” (Simon, 89). A machine learning

algorithm can be supplied different inputs, and then make decisions based on this data. This

broad definition has resulted in many different algorithms and techniques being included under

the name of machine learning. One category of algorithms is the “supervised learning” set

(Brownlee). A supervised learning algorithm is first supplied example training data. This is then

utilized when the algorithm is provided an input. The algorithm references the training data in

!5

order to produce the most relevant possible output. Supervised learning falls into two general

categories: classification and regression (Brownlee). They both achieve similar goals: both

attempt to predict a desired output from the input, based on previous examples. Regression,

however, exists within the scope of rational numbers, whereas classification has a predefined list

of options to which the input should be matched. Regression therefore allows for an output never

seen before in the training data; in comparison, classification must always match to a list of

options, even if the input doesn’t greatly resemble any of the examples in the training data.

 In supervised learning, the efficacy of the machine learning algorithms relies largely on

the quality of the training data. An entry in the training dataset would contain a number of

features (consistent with all other entries in the dataset), accompanied with one designated label

(Gordon, Hello World - Machine Learning Recipes #1). A feature is simply a variable (expressed

numerically) that describes some quality of the entry. The label defines what the entry should be

classified as. When classifying a new piece of data, the machine learning algorithm considers all

the features given in the input, then based on the trends observed in the training dataset, assign it

the most likely label (Gordon, Hello World - Machine Learning Recipes #1). This combination of

machine learning algorithm and supplied training dataset is referred to as a classifier (Gordon,

Hello World - Machine Learning Recipes #1). All features included should be simple and

relevant; that way the classifier is more likely to understand how each individual affects the

outcome of the label (Gordon, What Makes a Good Feature? - Machine Learning Recipes #3). If

an irrelevant feature is included, there is a possibility that the algorithm will perceive a feature-

label relationship where one doesn’t actually exist. When later testing the classifier on unseen

data, it will attempt to apply this conjectured relationship, rather than basing its prediction on

!6

information that actually matters. This is likely to lower correct classification rates, reducing the

efficacy of the classifier.

 K-nearest neighbours and decision tree induction are both machine learning algorithms

which can be applied in a supervised learning context, for classification purposes. Although both

rely on mathematics to perform classifications, the calculations performed to achieve

classification are completely different. These different approaches can result in different outputs

on occasion, even when given an identical input and training dataset, despite having the same

objective.

2.1 - K-nearest neighbours

 The K-nearest neighbours algorithm works by keeping the training dataset stored in

memory for comparisons. Each entry in the dataset can be considered as a point, its location

represented by the various features it possesses. For example, if a dataset had three features, it

could be plotted on the x, y, and z axis as a visual representation. For any more than three

features, the concept remains the same; it just becomes harder for humans to visualize as the

number of axises outnumbers regular three-dimensional space. When a new input is given for

classification, it is similarly plotted among the training dataset. The algorithm then calculates the

k (where k is defined by the user) nearest neighbours of the input point. The input point is then

classified based on the labels of the nearby points.

Calculating Nearest Neighbours

 The standard Euclidean distance function is used to calculate the nearest neighbours of

the given input point (Larose, 99). In standard two dimensional space the formula is:

!7

 Given entry A, and entry B, with respective features A1, A2 … An and B1, B2 … Bn, the

formula is adapted to be as follows:

 The main issue with this formula is equal representation of every feature. All features

must be represented numerically to work in mathematical computations. If one feature is a

boolean for example, it would typically be given a value of 0 for false, and 1 for true. Consider

three example entries:

 After using the Euclidean distance formula the results are:

 Entries with a smaller distance are considered more similar. Therefore the 180 cm female

is considered 10 times more similar to the 180 cm male, than the 170 cm female. Whether this is

an accurate evaluation of similarity depends on the situation, but most often it is ideal for all

features to be represented equally. This should not only be considered for binary values, but the

scale of all features. If another feature was added such as “average sleep per night in hours”, it

Gender (0=male, 1=female) Height (cm)

Entry 1 1 170

Entry 2 0 180

Entry 3 1 180

Distances

Entry 1 vs Entry 2 10.05

Entry 1 vs Entry 3 10.00

Entry 2 vs Entry 3 1.00

!8

would likely be represented more than the binary 0/1 gender value (given that the difference

could be around 3-4), but less than the height value (difference anywhere from 10-50).

2.2 - Decision Tree Induction

 Decision tree induction is the process of forming a decision tree based on information

provided in the training data. Unlike k-nearest neighbours, decision tree induction is a set of

algorithms rather than an algorithm in singular. The decision tree formed is essentially a

cascading list of if-then-else-statements, with each statement based on a singular feature that the

data contains (Tan, 150). The statements should narrow down the possibilities of what the label

could be, until a sole answer is reached (Tan, 150). Therefore, every entry in the training dataset

will reach its proper label if it is evaluated by the decision tree, due to the tree being based on the

training dataset in the first place. This provides a method with which to similarly evaluate test

data. Because a piece of test data will have all the same features, it can follow the same decision

tree and reach a predicted label. Whether this label is correct is based on how well the decision

tree generalizes patterns in the training dataset, as well as the extent to which each piece of test

data follows these patterns.

 One example of a decision tree induction algorithm is the CART (Classification and

Regression Trees) method. All decision tree algorithms induce the tree by splitting the training

dataset up according to features it possesses (Tan, 150). In each split that CART makes the

criteria is based on only one feature, and separates the dataset into only two new categories (Tan,

156). To split the dataset, two pieces of information must be determined: the best possible feature

to split on, and where in the range of feature values to split (Tan, 160-162). There are many ways

!9

of determining this information; one method commonly used by CART implementations is the

Gini index (Tan, 158).

 The Gini index is a measure of how impure a dataset is, measured on a scale of 0 to 1

(Tan, 159). If a dataset has a Gini index of 0, it is completely pure; a value of 0 signifies that

every entry in the dataset belongs to the same classification (Tan, 159). If the Gini index is

instead 1, the dataset is completely impure; every single classification possible is equally

represented inside the dataset (Tan, 159). The goal when splitting the parent dataset is to reduce

the impurity as much as possible in each subsequent child dataset. That way the Gini index

reaches 0 as quickly as possible, therefore also isolating each label in the dataset with as few

statements as possible.

 Given a database with classes B1, B2, … Bn, the Gini index is calculated as follows (Tan,

159):

 Where P(Bn) is the probability of a classification being Bn if it was chosen at random. For

example, given a dataset with 2 classes: B1 and B2 and entries consisting of [B1, B1, B2, B2, B2],

the Gini index would be:

 The Gini index can also be used to determine which feature is the best to split upon. To

do this, each possible split condition is considered (Tan, 162). The Gini index is then calculated

for both of the potential subclasses given the specific split condition. From there each index is

multiplied by the percentage of entries that went into that class, then added together (Tan, 160).

This value determines the goodness of the split (Tan, 160). The goodness of the split should be as

!10

low to zero as possible. The lower the value, the better the reduction of the Gini index. When all

possible split conditions have been considered, the split with the lowest goodness is chosen and

added to the decision tree. This process continues until every Gini index reaches 0, and therefore

all entries have been classified.

3 - CAPTCHAs

 A “CAPTCHA” is a “Completely Automated Public Turing Test To Tell Computers and

Humans Apart” (Chellapilla, et al. 1). The Turing Test is named after its inventor, Alan Turing. A

conventional Turing Test is run by humans; after a series of interactions a human attempts to

determine whether they interacted with another person, or with a computer. The computer

attempts to mimic human like behaviour such that the two entities are indistinguishable.

CAPTCHAs facilitate the same process of distinguishing between computer and human; the

main difference is that the trial needs to be “completely automated”, and therefore a computer

must conduct the test and determine the outcome, which is counter to the conventional roles. The

very first CAPTCHA was developed in 1997 by scientists at the company AltaVista (Chellapilla,

et al. 1). AltaVista operated a search engine, which allowed administrators to add their own

URLs to their database. However, this service was found susceptible to bots automating the

process of repeatedly adding the same URL, which would then give the perpetrator an unfair

advantage over competitors (Chellapilla, et al. 1). To resolve this conundrum, the AltaVista

scientists pioneered the first CAPTCHA based on the human ability to recognize text

(Chellapilla, et al. 1).

!11

 In a text-recognition CAPTCHA, the CAPTCHA generated will display warped text in an

image format; this way the result is in an obscure format for computers, yet still recognizable for

humans. This type of challenge is what the CAPTCHA relies on; any given CAPTCHA test must

be easily solvable for humans, yet in an area that computers are not yet skilled enough to

surmount (Chellapilla, et al. 2). Visual recognition CAPTCHAs therefore rely upon human

pattern recognition ability.

 A group of Microsoft researchers at the Second International Workshop for Human

Interactive Proofs deemed that the “human success rate [when attempting to solve a CAPTCHA]

should approach 90%”, whereas “automatic scripts should not be more successful than 1 in

10,000 (0.01%)” (Chellapilla, et al. 2). If success rates drop below 90% for human CAPTCHA

solving, the website administrators run the risk of frustrating their users, making it less likely for

them to use the website (Chellapilla, et al. 2). Thus, web services such as reCAPTCHA have

been developed; these provide CAPTCHAs from a generator that has already been tested for

solvability. That way web developers can simply query the service for a CAPTCHA, instead of

running their own CAPTCHA generator, which could be liable to unsuitable difficulty levels.

4 - Tests

 After researching the difference between CART and k-nearest neighbours, tests were

orchestrated in order to compare their efficacy with regard to solving word recognition

CAPTCHAs. To generate the CAPTCHAs the PHP script “Securimage” was used. A service was

needed that allowed for bulk generation of CAPTCHAs along with their solutions in plain text,

and Securimage provided that feature. It was also the third result found after Googling for “Open

!12

Source CAPTCHA generator”. Other popular services that were browsed (such as visualCaptcha

and reCAPTCHA) were either not based on word recognition, or hosted as a CAPTCHA

provider, so bulk access was infeasible.

4.1 - Simplifying Classification

 One complication that is necessary to address when solving word recognition

CAPTCHAs is the large number of possible combinations when stringing together letters.

Securimage defines its character set to use on generation as:

public $charset=‘ABCDEFGHKLMNPRSTUVWYZabcdefghklmnprstuvwyz23456789';

(Drew)

 This character set uses a large portion of the alphabet, uppercase and lowercase,

accompanied by 8/10 numerical digits. Although no reason is listed in the source code for these

missing characters, one can only assume that it is due to their visual similarity with one another.

For example, a warped “Q” could appear similar to either a “0” or an “O”.

 By default, Securimage automatically generates CAPTCHAs with 6 characters (Drew).

Given that the variable $charset contains 50 characters, each individual character in the

CAPTCHA has 50 possible options to choose from. With 6 characters, the number of possible

CAPTCHA combinations given by Securimage equals 506 combinations, or 15.625 billion. For

the machine learning algorithm to recognize all 15.625 billion possible combinations, it would

require a training dataset with every single one of these combinations included at least once.

Ideally each combination would be expressed more than once, that way variations in the

appearance of the image due to Securimage’s distortion was accounted for. This is obviously not

!13

a feasible expectation for the training dataset; a dataset of this size would take up massive

amounts of hard drive space and also result in extremely slow classification.

 One way to reduce the number of combinations, is to separate the CAPTCHA image into

individual characters. That way, the classifier needs to pick only from 50 possible options, rather

than 15.625 billion, thereby reducing the scope of operations. This transforms recognizing the

CAPTCHA from a challenging, time consuming classification problem that’s vast in scope, into

6 classification problems that are much more reasonable.

 Although it may be possible to use machine learning to separate characters it wouldn’t be

through using classification techniques. It was therefore decided to write the character separation

portion of the script manually through trial and error, that way all machine learning would be

focused solely on letter classification. An example CAPTCHA from the test data, code

“sywbwa”, looks so when first generated:

The image processing removes some of the darker lines obscuring the image (they are a

consistent colour each time), and converts each pixel to either completely black (0, 0, 0), or

white (255, 255, 255):

!14

 This image is then taken and processed so that any black pixel with a white pixel

bordering it (in both cardinal and sub-cardinal directions) is removed. This has the added effect

of shrinking the letters in the CAPTCHA.

 The image is then separated into individual characters determined through finding

columns with no pixels. If there are less than 5 of these spaces, columns with the lowest number

of black pixels are chosen.

4.2 - Creating Training Data

 To establish a training dataset Securimage was instructed to create 500 new CAPTCHAs,

along with their solutions. Each of these images were processed and separated into different

characters. It was manually ensured that each CAPTCHA was properly separated; any that failed

to separate were removed. Of the 500 generated, 368 were separated correctly, and thus used as

training data. This created a total of 2,208 different characters. Another script cropped and

centred each letter to 63 by 57 pixels (this value was based on the largest character when cropped

perfectly). Each image was then added to the training data folder; each type of character was

!15

automatically sorted into subfolders to keep track of classification. This is why being able to

generate CAPTCHA solutions was an important factor in the CAPTCHA generator, otherwise

characters would have had to be manually sorted. Characters that varied largely between capital

and lowercase (a/A, b/B) were sorted into different classifications whereas characters with

similar shapes (c/C) remained in the same group. Securimage is not case-sensitive when

inputting CAPTCHA solutions, so grouping the characters by similarity of shape was an effort to

simplify matters for the classifier (Securimage).

4.3 - Feature Selection

 The features for the training data were based off of the pixel density. Each character fit

inside the same 63 by 57 pixel dimensions, so that way each feature was able to represent the

value of a certain pixel in a specific location consistent among all examples. Originally each

feature was just a 0 or a 1 indicating pixel presence, but that gave poor classification results. The

main problem with binary encoding is that every pixel is valued equally, but really, a few stray

pixels off to the side should not be as significant as one that lays inside the core shape of the

character. The solution was to give each pixel a value from 0 to 9, based on how many pixels

were filled inside the 3x3 grid around it. That way, the machine learning algorithms could

differentiate between a pixel being there at random, with a low pixel density around it, versus

more important pixels with consistently high values among many examples. See Figure 1 below,

on each pixel its density is also displayed. Note the extra pixels hanging from the top arch of the

two shape, with a value of “2” and “4” respectively. Because these don’t have high values, they

are not interpreted as high importance to the shape of the image.

!16

Figure 1

4.4 - Analysis

 The scikit-learn Python library was used in order to perform the analysis. Scikit-learn is a

reputable machine learning library used by companies such as Spotify and Change.org (Scikit-Learn). The

library provided implementations of both the k-nearest neighbours and CART algorithms to ensure the

machine learning was being performed correctly. For the tests 500 new CAPTCHAs were generated, each

one was processed with the letter separation script, and then the pixel data of those characters was fed into

the machine learning algorithms as features. Both algorithms received the same 500 test CAPTCHAs to

guarantee fairness. The results of each CAPTCHAs processing can be seen below in Figure 2 and 3:

!17

Figure 2

Figure 3

CART Letter Detection per CAPTCHA

N
um

be
r o

f C
AP

TC
H

As

0

30

60

90

120

Letters Recognized
0 1 2 3 4 5 6

29

62

10299

50

25

2

KNN Letter Detection per CAPTCHA (k=15)

N
um

be
r o

f C
AP

TC
H

As

0

30

60

90

120

Letters Recognized
0 1 2 3 4 5 6

65

111

94

70

23

60

!18

 In total, 369 CAPTCHAs were successfully separated into characters. To solve a

CAPTCHA, all 6 character must be identified correctly. KNN was therefore able to solve 65/369,

or ≈17.6%, and CART was able to solve 29/369, or ≈7.86%. Although both were able to easily

subvert the expected 1/10,000 solve rate, the KNN algorithm proved to be more accurate than

CART in CAPTCHA solving and CAPTCHA letter recognition. CART was only able to

recognize 1314 letters, or 59.35%, whereas KNN was able to recognize 1583 letters, or 71.50%.

 It was ultimately the design of the CART algorithm that made it less effective in

comparison to KNN. The principal difference between the two is the extent to which each values

features. While KNN is able to consider all pixels at once when classifying, CART classifies

based on the values of a few specific pixels. The specificity of CART’s decision making is an

obvious issue. It would be an unreasonable expectation for a human to classify letters based on

only a few specific pixels. It is even more unreasonable to expect a computer, an ignorant entity

relative to a human, to do the same. This is why KNN is more effective for this specific task; the

algorithm more accurately mimics how human letter recognition works. Although possibly

CART’s deficiencies could be mitigated through better feature selection, it would unlikely bridge

the ability gap between the two algorithms. CART is simply not as suited to classifying

characters as KNN is.

4.5 - Limitations

 One large limitation of solving CAPTCHAs with machine learning is the specificity to

which the classifier is trained. The Securimage character separation tool relies heavily on the

number of characters and colour values in the image being consistent. The classifier relies on the

same font being used so characters contain the same general shape. If any one of these properties

!19

were altered, characters would not resemble those in the training dataset, and therefore

successful classification rates would drop. The classifier and character separation tool are also

both tailored specifically towards Securimage CAPTCHAs; classification of a CAPTCHA

represented in a different format would likely not receive successful classification rates near

what was achieved for Securimage. To properly classify a text-recognition CAPTCHA produced

by different software, a new letter separation method would need to be designed, and the

classifier would need to be trained on data retrieved from this software. A classifier that could

solve multiple types of CAPTCHAs is hypothetically possible using machine learning, yet would

require training data from any type of CAPTCHAs intended to solve. It would additionally

warrant the use of more complex features than just pixel values. Ideally this solve-all classifier

would be able to recognize and classify based on general shapes of the letters, due to raw pixel

values being liable to variation over different CAPTCHA types. The limitation in this case is not

due to faults with machine learning, but instead based on the amount of time, resources, and

knowledge of the individual undertaking the creation of the classifier.

 Another possible hindrance in the way of using machine learning to solve CAPTCHAs is

their increasing complexity. reCAPTCHA, a CAPTCHA service created by Google, claims to be

“the most widely used CAPTCHA provider in the world” (ReCAPTCHA). Although

reCAPTCHA initially relied on distorted text for human verification, they recently created a new

API, the “No CAPTCHA reCAPTCHA” (ReCAPTCHA). This uses “advanced risk analysis

techniques”, utilizing “a broad range of clues that distinguish humans from bots” (reCAPTCHA).

The important factor here is that the clues mentioned, aren’t described in detail. Upon

investigation, one group found that all Javascript provided by Google was obfuscated, “to

!20

prevent analysis by third parties” (Sivakorn, 1). This makes machine learning classification

defunct in solving this CAPTCHA type. Text recognition CAPTCHAs have an easily

understandable goal, with simple information provided: use the image given to correctly identify

the text, then the CAPTCHA is solved. Although in the new system the intent is still there to

solve the CAPTCHA, now there is no way of knowing what conditions need to be fulfilled to

pass the test. This now takes the shape of a reinforcement learning problem, in which a program

must discover the ideal circumstances to replicate in order to solve the CAPTCHA. Although

machine learning techniques could still be used to help subvert CAPTCHAs; classification

techniques are only going to become less effective. The crux is that CAPTCHA providers have

deemed classification problems too simple for computers.

5 - Conclusions

 Overall, it was shown that the k-nearest neighbours algorithm is more effective at solving

text-distortion CAPTCHAs than the CART algorithm. The tests also proved that visual

CAPTCHAs are no longer effective for distinguishing between humans and computers

consistently. While a 1/10000 solve rate was deemed an ideal strength, KNN was able to solve

approximately 1/6 CAPTCHAS. This has large implications for any website still attempting to

recognize bots with text-distortion CAPTCHAs. A malicious user could potentially collect data

based on the text-distortion CAPTCHAs they are using, then train bots with machine learning to

bypass the verification step. This would then allow bots to mass enact on the user’s behalf,

spreading spam or buying out tickets for example. At this point, text-distortion CAPTCHAs are

!21

no longer secure. The implementation of a text-distortion CAPTCHA should be seen as a

security flaw, as it can no longer sufficiently distinguish between humans and computers.  

!22

Appendix A - Training Data

Including all the training data into the appendix of this EE would be impractical, as the file is 23

mb of text and would take up literally hundreds of pages. As such, the information has been

hosted online, and can be viewed at one’s leisure. The link to access all the information can be

found here:

https://www.dropbox.com/sh/5rsh34n73wz183t/AAB4sOLQW5Z8_AOXXDK6OBAsa?dl=0

This folder contains all the training data, the script used to solve new CAPTCHAs, and various

other scripts written during the process of assembling and moving around training data. Also

included is a modified version of Securimage. No aspects of the CAPTCHA generation was

changed, just a few extra lines of code were added in order to save CAPTCHAs to a folder rather

than display them on the webpage.

All the Python scripts were written in version 2.7.10. Some scripts require the Sci-kit Learn

Library and/or the Pillow graphics processing library.

Appendix B - Machine Learning Script

This is the script that was used to recognize the solve the CAPTCHAs. Although it is probably

easier to view it online from the Dropbox link, IB requirements state that the script must be

included in its entirety in the appendix. It was also written in Python, requiring both the Sci-kit

learn and the Pillow graphics processing libraries.

from PIL import Image
import os.path
import math
#Density info contains the training data from all the images

!23

from densityinfo import *
from sklearn.neighbors import KNeighborsClassifier
from sklearn import tree
#Classification must be based on numbers instead of strings.
This array relates the number that each character is classified
as to its string value
reverseArray = ["2", "3", "4", "5", "6", "7", "8", "9", "a",
"aCapital", "b", "bCapital", "c", "d", "dCapital", "e",
"eCapital", "f", "fCapital", "g", "gCapital", "h", "hCapital",
"k", "l", "lCapital", "m", "mCapital", "n", "nCapital", "p",
"r", "rCapital", "s", "t", "tCapital", "u", "v", "w", "y",
"yCapital", "z"]

#classifier either gets defined as KNN classifier or as decision
tree classifier
#classifier = tree.DecisionTreeClassifier()
#classifierType = "CART"
classifier = KNeighborsClassifier(15)
classifierType = "KNN"

#features and labels are both contained in the densityinfo
training data file
classifier.fit(features, labels)

#This function is used later in splitting characters -
#If there's multiple bridges of the same column, the ones in the
center are the most likely to bridge the two letters together
def compare(array1, array2):
 midpoint = (array1[3]+array1[2])/2
 array1distance = abs(midpoint-array1[1])
 array2distance = abs(midpoint-array2[1])
 if (array1distance < array2distance):
 return -1
 elif (array1distance == array2distance):
 return 0
 else:
 return 1

imagecounter = 0
#this is the path to the file location of all the newest
CAPTCHAs
while os.path.exists("generatenewcaptchas/newcaptchas/" +
str(imagecounter) + ".png"):
 if (not os.path.exists("results/" + classifierType + "/" +
str(imagecounter) + "/")):

!24

 os.mkdir("results/" + classifierType + "/" +
str(imagecounter) + "/")

 #save and move the CAPTCHA from the new captcha foler into the
results folder
 image = Image.open("generatenewcaptchas/newcaptchas/" +
str(imagecounter) + ".png")
 image.save("results/" + classifierType + "/" +
str(imagecounter) + "/0.png")
 characterfile = open("generatenewcaptchas/newcaptchas/" +
str(imagecounter) + ".txt")
 characterstring = characterfile.read()
 newfile = open("results/" + classifierType + "/" +
str(imagecounter) + "/0.txt", "w")
 newfile.write(characterstring)
 newfile.close()

 #create a new image to save any modifications to the CAPTCHA
to
 newimage = Image.new("RGB", (215, 80), (255, 255, 255))

 for x in range(10, 205):
 for y in range(10, 70):
 r, g, b = image.getpixel((x, y))
 if (r == 140 and b == 140 and g == 140):
 #this color code is commonly found in the characters of
the CAPTCHA, so its important to transfer them over
 newimage.putpixel((x, y), (0, 0, 0))
 elif (r != 255 and g != 255 and b != 255):
 #if its not white, and we know it's not part of a
character, we have to determine if its a good pixel to keep
 minimumxrange = max(0, x-1)
 maximumxrange = min(214, x+1)+1
 minimumyrange = max(0, y-1)
 maximumyrange = min(79, y+1)+1
 locations = []
 while (len(locations) == 0):
 #search neighbouring pixels for ones that might be
part of a character
 for testx in range(minimumxrange, maximumxrange):
 for testy in range(minimumyrange, maximumyrange):
 testr, testg, testb = image.getpixel((testx,
testy))
 if (testr == 140 and testg == 140 and testb ==
140):
 locations.append([testx, testy])

!25

 minimumxrange = max(0, minimumxrange-1)
 maximumxrange = min(214, maximumxrange+1)
 minimumyrange = max(0, minimumyrange-1)
 maximumyrange = min(79, maximumyrange+1)

 if (len(locations) == 0):
 newimage.putpixel((x, y), (0, 0, 0))
 else:
 #find if the surrounding pixels have more white spaces
or character colored spaces, decide whether to include it in new
image or not

 whitespaces = 0
 goodspaces = 0

 for location in locations:
 minimumxrange = max(0, location[0]-1)
 maximumxrange = min(214, location[0]+1)+1
 minimumyrange = max(0, location[1]-1)
 maximumyrange = min(79, location[1]+1)+1
 for testx in range(minimumxrange, maximumxrange):
 for testy in range(minimumyrange, maximumyrange):
 testr, testg, testb = image.getpixel((testx,
testy))
 if (testr == 255 and testg == 255 and testb ==
255):
 whitespaces += 1
 elif (testr == 140 and testg == 140 and testb ==
140):
 goodspaces += 1

 if (whitespaces > goodspaces):
 newimage.putpixel((x, y), (255, 255, 255))
 else:
 newimage.putpixel((x, y), (0, 0, 0))

 image = newimage
 #this is the newest version of the CAPTCHA we're going to
refer to from now on

 newimage = Image.new("RGB", (215, 80), (255, 255, 255))

!26

 #create another new image in order to make more modifications
to

 #go through each pixel, only include it if it's completely
surrounded by other black pixels
 for x in range(0, 215):
 for y in range(0, 80):
 r, g, b = image.getpixel((x, y))

 if (r == 0 and g == 0 and b == 0):
 minimumxrange = max(0, x-1)
 maximumxrange = min(214, x+1)+1
 minimumyrange = max(0, y-1)
 maximumyrange = min(79, y+1)+1
 failedTest = False

 for testx in range(minimumxrange, maximumxrange):
 for testy in range(minimumyrange, maximumyrange):
 testr, testg, testb = image.getpixel((testx, testy))
 if (testr == 255 and testg == 255 and testb == 255):
 newimage.putpixel((x, y), (255, 255, 255))
 failedTest = True
 break

 if (failedTest):
 break

 if (not failedTest):
 newimage.putpixel((x, y), (0, 0, 0))

 image = newimage
 #save modifications again

 #this is to determine where the splits should be made in order
to separate the image into characters
 startedTracking = False
 positionList = []
 imageList = []

 for x in range(0, 215):
 columnpixels = 0;
 for y in range(0, 80):
 r, g, b = image.getpixel((x, y))
 if (r == 0 and g == 0 and b == 0):
 columnpixels += 1

!27

 if (columnpixels > 1 and not startedTracking):
 #new start of letter, add to position list
 startedTracking = True
 positionList.append(x)
 elif (columnpixels < 1 and startedTracking):
 #end of same letter, add to position list
 startedTracking = False
 positionList.append(x)

 #to get 6 letters the image needs to be split in 12 places.
This indicates there isn't enough splits (characters bridged by
distortion)
 while (len(positionList) < 12):
 largestwidth = 0
 largestindex = 0
 #the current character we have with the largest width is
probably the one that has two letters and needs to be split
 for loop in range(0, len(positionList)/2):

 startX = positionList[loop*2]
 endX = positionList[loop*2+1]
 if (endX-startX > largestwidth):
 largestwidth = endX-startX
 largestindex = loop

 startX = positionList[(largestindex*2)]
 endX = positionList[(largestindex*2)+1]
 splitLocation = 0
 bridgeCheck = 1
 #goes through the "character", finds the point where there
are the least amount of pixels in a column, thats most likely to
be where the bridge is
 while (splitLocation == 0):
 columns = []
 for x in range(startX, endX):
 columnpixels = 0
 for y in range(0, 80):
 r, g, b = image.getpixel((x, y))
 if (r == 0 and g == 0 and b == 0):
 columnpixels += 1

 if (columnpixels == bridgeCheck):
 columns.append([columnpixels, x, startX, endX])

!28

 if (len(columns) > 0):
 sortedcolumns = sorted(columns, cmp=compare)
 splitLocation = sortedcolumns[0][1]

 bridgeCheck += 1

 #recreate the position list, accounting for the new splits
that need to be made
 newPositionList = []
 for loop in range(0, len(positionList)/2):
 if (largestindex != loop):
 startX = positionList[loop*2]
 endX = positionList[loop*2+1]
 newPositionList.append(startX)
 newPositionList.append(endX)
 else:
 startX = positionList[loop*2]
 endX = positionList[loop*2+1]
 newPositionList.append(startX)
 newPositionList.append(splitLocation)
 newPositionList.append(splitLocation)
 newPositionList.append(endX)

 positionList = newPositionList

 #nothing is done for letters that have been split in two by
columns, because the issue did not occur frequently, and it
would have been more challenging to solve than

 successfulSplitting = False
 if (len(positionList) == 12):
 successfulSplitting = True
 #go through each character, encode as its own image
 for loop in range (0, 6):

 startX = positionList[loop*2]-3
 endX = positionList[loop*2+1]+4

 newimage = Image.new("RGB", (endX-startX, 80), (255, 255,
255))

 for x in range(startX, endX-1):

!29

 for y in range(0, 80):

 r, g, b = image.getpixel((x, y))
 newimage.putpixel((x-startX, y), (r, g, b))

 imageList.append(newimage)

 #get what each letter is actually meant to be

 characterfile = open("results/" + classifierType + "/" +
str(imagecounter) + "/0.txt")
 characterstring = characterfile.read()

 predictionList = []
 imageBinaryList = []
 for loop in range(0, 6):
 #for each image, crop to the bounds it occupies
 image = imageList[loop]
 width, height = image.size
 firstxPixel = 0
 firstyPixel = 0
 lastxPixel = 0
 lastyPixel = 0
 breakstatement = False
 for x in range(0, width):
 for y in range(0, height):
 r, g, b = image.getpixel((x, y))
 if (r == 0 and g == 0 and b == 0):
 firstxPixel = x
 breakstatement = True
 break

 if (breakstatement):
 break

 breakstatement = False
 for y in range(0, height):
 for x in range(0, width):
 r, g, b = image.getpixel((x, y))
 if (r == 0 and g == 0 and b == 0):
 firstyPixel = y
 breakstatement = True
 break

 if (breakstatement):
 break

!30

 breakstatement = False

 for x in range(width-1, -1, -1):
 for y in range(0, height):
 r, g, b = image.getpixel((x, y))
 if (r == 0 and g ==0 and b ==0):
 lastxPixel = x
 breakstatement = True
 break

 if (breakstatement):
 break

 breakstatement = False

 for y in range(height-1, -1, -1):
 for x in range(0, width):
 r, g, b = image.getpixel((x, y))
 if (r ==0 and g == 0 and b == 0):
 lastyPixel = y
 breakstatement = True
 break
 if (breakstatement):
 break

 #create new cropped image
 newImage = Image.new("RGB", (lastxPixel-firstxPixel,
lastyPixel-firstyPixel), "white")
 for x in range(firstxPixel, lastxPixel):
 for y in range(firstyPixel, lastyPixel):

 r, g, b = image.getpixel((x, y))
 newImage.putpixel((x-firstxPixel, y-firstyPixel), (r,
g, b))

 image = newImage
 width, height = image.size

 newImage = Image.new("RGB", (63, 57), "white")
 blankSpaceX = 63-width
 blankSpaceY = 57-height

 #center image in 63*57 box (bounds found from largest
character found in test data)

!31

 for x in range(max(0, int(math.floor(blankSpaceX/2))),
int(min(62, math.ceil(blankSpaceX/2+width)))):
 for y in range(max(0, int(math.floor(blankSpaceY/2))),
int(min(56, math.ceil(blankSpaceY/2+height)))):

 r, g, b = image.getpixel((x-
int(math.floor(blankSpaceX/2)), y-int(math.floor(blankSpaceY/
2))))
 newImage.putpixel((x, y), (r, g, b))

 newImage.save("results/" + classifierType + "/" +
str(imagecounter) + "/letter" + str(loop) + "center.png")

 #encode features based on pixel density
 imageFeatures = []
 for x in range(0, 63):
 for y in range(0, 57):
 minimumxrange = max(0, x-1)
 maximumxrange = min(62, x+1)+1
 minimumyrange = max(0, y-1)
 maximumyrange = min(56, y+1)+1
 pixelcounter = 0
 for testx in range(minimumxrange, maximumxrange):
 for testy in range(minimumyrange, maximumyrange):
 testr, testg, testb = newImage.getpixel((testx,
testy))
 if (testr == 0 and testg == 0 and testb == 0):
 pixelcounter += 1
 imageFeatures.append(pixelcounter)

 imageBinaryList.append(imageFeatures)

 #Now, the script has characters separated, and each one
encoded as features
 #At this point, it can either be saved and used as
training data, or continue on and be classified by the machine
learning algorithm

 for loop in range(0, 6):
 prediction = classifier.predict([imageBinaryList[loop]])

 newfile = open("results/" + classifierType + "/" +
str(imagecounter) + "/letter" + str(loop) + "prediction.txt",
"w")
 newfile.write(reverseArray[prediction])
 newfile.close()

!32

 predictionList.append(reverseArray[prediction])

 if (not successfulSplitting):
 print("failed")

 newfile = open("results/" + classifierType + "/" +
str(imagecounter) + "/finalprediction.txt", "w")
 finalstring = ""
 for loop in range(0, 6):
 finalstring = finalstring + predictionList[loop]

 newString = finalstring.replace("Capital", "")
 newfile.write(newString)
 newfile.close()
 imagecounter += 1

!33

Works Cited

"AlphaGo | DeepMind." DeepMind. Google, n.d. Web. 06 Oct. 2016.

Brownlee, Jason. "A Tour of Machine Learning Algorithms." Machine Learning Mastery.

Machine

 Learning Mastery, 25 Nov. 2013. Web. 21 Aug. 2016.

Chellapilla, Kumar, Kevin Larson, Patrice Y. Simard, and Mary Czerwinski. "Building

 Segmentation Based Human-Friendly Human Interaction Proofs (HIPs)." Human

 Interactive Proofs Lecture Notes in Computer Science (2005): 1-26. Web.

Hello World - Machine Learning Recipes #1. By Josh Gordon. Perf. Josh Gordon. Hello World -

 Machine Learning Recipes #1. YouTube, 30 Mar. 2016. Web. 17 June 2016.

Kourou, Konstantina, Themis P. Exarchos, Konstantinos P. Exarchos, Michalis V. Karamouzis,

 and Dimitrios I. Fotiadis. "Machine Learning Applications in Cancer Prognosis and

 Prediction." Computational and Structural Biotechnology Journal 13 (2015): 8. Web.

Larose, Daniel T. Discovering Knowledge in Data: An Introduction to Data Mining. Hoboken,

NJ:

 Wiley-Interscience, 2005. 90-106. Print.

Phillips, Drew. Securimage. Computer software. Securimage. Vers. 3.6.4. Drew Phillips, 3 Mar.

 2016. Web. 18 June 2016.

"ReCAPTCHA." Easy on Humans, Hard on Bots. Google, n.d. Web. 30 Aug. 2016.

Shet, Vinay. "Are You a Robot? Introducing "No CAPTCHA ReCAPTCHA"" Google Online

 Security Blog. Google, 03 Dec. 2014. Web. 30 Aug. 2016.

!34

Simon, Phil. Too Big to Ignore: The Business Case for Big Data. N.p.: n.p., n.d. 89. Print.

Sivakorn, Suphannee, Jason Polakis, and Angelos D. Keromytis. "I'm Not a Human: Breaking

 the Google ReCAPTCHA." I'm Not a Human: Breaking the Google ReCAPTCHA

(2016):

 1. Web. 28 Aug. 2016.

Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. "Classification: Basic Concepts, Decision

 Trees, and Model Evaluation." Introduction to Data Mining. Boston: Pearson Addison

 Wesley, 2005. 145-62. Print.

What Makes a Good Feature? - Machine Learning Recipes #3. By Josh Gordon. Perf. Josh

 Gordon. What Makes a Good Feature? - Machine Learning Recipes #3. Google, 27 Apr.

 2016. Web. 17 June 2016.

"Who Is Using Scikit-learn?" Who Is Using Scikit-learn? Scikit-Learn, 22 Aug. 2016. Web. 06

 Oct. 2016.

